
Efficient Way-based Cache Partitioning for Low-Associativity Cache

Byunghoon Lee and Eui-Young Chung
School of Electrical and Electronic Engineering, Yonsei University

50 Yonsei-ro Seodaemun-gu, Seoul, Korea
E-mail: bh2@dtl.yonsei.ac.kr, eychung@yonsei.ac.kr

Abstract: Cache Partitioning is well-known technique to
reduce destructive interference among co-running
applications in a shared last-level cache (SLLC). Way-based
cache partitioning is a popular partitioning scheme due to its
simplicity, but it can dramatically reduce associativity of each
partition. Also, most SLLC have limited associativity because
the higher associativity causes the higher cache access latency
and power consumption. Therefore, we present Selective
Cache Partitioning (SCP), a novel way-based cache
partitioning technique for SLLC with the low associativity.
SCP detects outstanding applications causing heavy cache
pollution by on-line profiling and isolates them in private
partitions. Then, it allocates non-outstanding applications to
a shared partition, thereby partitioning SLLC selectively and
providing more associativity to applications by sharing the
partition. We provide experimental results to show the
efficiency of SCP.

Keywords— cache management, cache partitioning,
last-level cache

1. Introduction

 Most chip multiprocessors (CMPs) have a shared last-level
cache (SLLC), which is crucial resource on system
performance. In CMP, multiple applications with various
workloads execute concurrently, and contention of
applications in SLLC can cause significant performance
degradation due to imbalance of capacity distribution and
destructive interaction among applications [1].
Cache partitioning is a viable solution to prevent the

performance degradation caused by the cache contention.
Way-based cache partitioning is a popular partitioning
scheme, which divides SLLC by ways and permit each
application to replace cache blocks only within its assigned
subset of ways. Way-based cache partitioning has a great
advantage of low hardware cost, but it can reduce the
associativity of each partition because the associativity of
each partition is proportional to its partition size. It means that
SLLC must have a large number of ways for way-based cache
partitioning to work well [2]. However, a large SLLC have a
limited associativity since the higher associativity leads to the
higher cache access latency and power consumption. SLLC
with 32-way has up to 3.3x the energy per hit and is 32 %
slower than SLLC with 4-way [3].
To tackle this limitation, we propose a way-based cache

partitioning scheme for a SLLC with the limited associativity,
Selective Cache Partitioning (SCP), which allocate private
partitions and one or zero shared partition dynamically in
contrast with the existing way-based cache partitioning
methods allocating private partitions to every running
application.

Fig. 1. Miss rate versus associativity of 3 benchmarks

Fig. 2. access time versus associativity in 1MB SLLC

Fig. 3. dynamic energy versus associativity in 1MB SLLC

2. Motivation

 Fig. 1 and Fig. 2 show the relationship between associativity
and performance of SLLC, and Fig. 3 shows the relationship
between associativity and energy consumption of SLLC. Fig.
1 represents the miss rate graph versus associativity with
1MB of SLLC, and three benchmarks of SPEC CPU2006 are
used in this graph: bzip2, soplex, lbm. Each benchmark shows
different shape of the graph. With soplex, associativity has a
great impact on the miss rate. Miss rate of soplex in SLLC

with 4-way is 19.16 % less than that with 1-way, and the miss
rate saturates with more than 8 ways. On the other hand, the
SLLC miss rate of bzip2 and lbm are rarely affected by the
associativity. Fig. 2 shows access time versus associativity of
SLLC whose capacity is 1MB, and Fig. 3 shows dynamic
energy consumption. Fig. 2 and Fig. 3 are obtained from
CACTI [4] which is cache timing and power model. Both
access time and dynamic energy increase exponentially in the
given size of SLLC as the associativity increases. Therefore,
some benchmarks have lower bound of associativity to
maximize performance. Also, the number of associativity of
SLLC should be restricted due to exponentially increasing
access time and energy consumption.
 The conventional cache partitioning schemes focus on multi-
programmed workloads and assigns separate partition to each
program. It means that way-based cache partitioning assigns
at least one way to each program and the associativity may be
in short when a lot of applications require SLLC partitions.
For example, 8 cores are running concurrently in the SLLC
with 16 ways and all cores execute the same benchmark,
soplex. In the case, each soplex needs at least 4 of
associativity in SLLC to maximize SLLC performance, but
the conventional cache partitioning schemes partition the
SLLC as 8 partitions which have 2 ways since the
conventional cache partitioning schemes partition the SLLC
as the ratio of programs’ cache utilizations. Therefore,
allocating a separate partition to every program may be
inefficient in the SLLC with the limited associativity.

3. Way-based Cache Partitioning Framework

Fig. 4. Way-based cache partitioning framework

 Cache partitioning scheme has two main component:
partition allocation policy and cache partitioning framework
to enforce the determined partition allocation. Also, dynamic
cache partitioning changes the partition allocation
periodically or when program phase is changed.
 In this work, we focus on the partition allocation algorithm
to allocate the proper SLLC capacity to each program and

implant the proposed partition allocation algorithm to the
way-based cache partitioning framework proposed in UCP
[5].
 In the cache partitioning framework, the partitioning
algorithm monitors cache utility of each program from utility
monitor (UMON) during the fixed length of interval, then the
partitioning algorithm makes new partition allocation at the
end of interval.
 Fig. 4 shows the cache partitioning framework for SLLC in
the three-level of cache hierarchy. In the framework, SLLC
accesses from private L2 caches are monitored by UMONs,
and each program monitored by a UMON. The partition
allocation algorithm decides partition size of each partition.
 To enforce the decided partition allocation to SLLC,
replacement policy is modified as victim block for the
specific program is selected among the blocks belong to the
partition for the program.

4. Selective Cache Partitioning

SCP allocates private partition or shared partition to
running applications dynamically at starting of each time
interval with cache access information profiled during the
previous time interval. For this on-line profiling, utility
monitors [5] are used in SCP architecture.

Fig. 5. SCP partition decision procedure

The partition decision of SCP has 4-step procedure shown

in Fig. 5. The main idea of the procedure is to isolate
applications with poor locality, called outstanding
applications in SCP, and to allocate applications with low or
medium locality to a shared partition. This is because the
main source of cache pollution is the application with poor
locality and destructive interaction among applications with
the similar level of locality is not significant. Therefore, the
shared partition can provide sufficient associativity to
applications assigned to it without considerable destructive
interference.

The first step of partition decision is to calculate
demanding partition size of each application. Demanding
partition size means the portion of SLLC demanded by an

application when all applications accesses SLLC
concurrently without cache partitioning. In the second step,
saturating partition size of each application is calculated
using profile information from the utility monitor. The
saturating partition size means that the utility of an
application is maximized at the size. Then, outstanding
applications allocated to private partition are decided with
demanding partition size and saturating partition size. If
demanding partition size is larger than saturating partition
size for an application, the application is selected as
outstanding application and its partition size is equal to the
saturating partition size. Therefore, SCP can isolate the
outstanding applications which demand large cache size
unnecessarily. Finally, non-outstanding applications are
allocated to the shared partition whose size is calculated by
subtracting the sum of all outstanding partition sizes from
total associativity of SLLC. Because the number of
partitions is less or equal to the number of applications, SCP
manager keep the mapping information between application
ID and partition ID.

5. Experiments

We use an in-house trace-driven SLLC (L3) simulator. L1 I-
cache (32KB, 4-way), D-cache (32KB, 4-way), and L2 cache
(512KB, 8-way) are private to the processor core. SLLC
(8MB, 8/16/32-way) is shared among 8 cores. Cache line size
of all caches is 64B and replacement policy is LRU. We use
benchmarks from SPEC CPU2006 suite and combine 8
benchmarks randomly to generate multi-programmed
workloads on an 8-core system.
 The performance metric used in experiments is IPC

throughput [5] defined in Equation 1.

	 (1)

where denotes instruction per cycle of the ith
application and N denotes the total number of applications.
We compare SCP with noCP (baseline, SLLC without cache

partitioning) and UCP (utility-based cache partitioning [5]).
Fig. 6, Fig. 7, and Fig. 8 show IPC throughput of SLLC with

8-way, 16-way, and 32-way, respectively.
In Fig. 6, IPC throughput of SCP is increased by 2.89 % and

10.7 % on average compared with noCP and UCP,
respectively. Also, IPC throughput of SCP is increased by up
to 3.79 % and 13.26 % compared with noCP and UCP,
respectively. In UCP, each application has only 1-way
associativity in 8-way SLLC shared by 8 cores because UCP
should allocate at least 1 way to each application. Therefore,
performance is degraded due to poor associativity despite
reduction of inter-application conflict misses. On the other
hand, SCP provide more associativity than UCP to each
application and also reduce inter-application conflict misses
by isolating the applications causing cache pollution.
In Fig. 7, IPC throughput of SCP is increased by 5.0 % and

0.22 % on average compared with noCP and UCP,
respectively. In Fig 8, IPC throughput of SCP is increased by
5.8 % and -0.86 % on average compared with noCP and UCP,

respectively. This results mean that 16-way is sufficient for
way-based cache partitioning.
The experimental results show that SCP is much more

effective than UCP in the case of very low associativity cache
and the performance of SCP is similar to that of UCP with
more than 16 ways.

Fig. 6. IPC throughput of SLLC with 8-way

Fig. 7. IPC throughput of SLLC with 16-way

Fig. 8. IPC throughput of SLLC with 32-way

6. Conclusion

In this paper, we present SCP, a novel cache partitioning for
SLLC with low associativity. To overcome associativity
problem of way-partitioning, SCP allocates private and
shared partition to applications. Therefore, applications
causing cache pollution can be isolated in the private
partitions, and applications allocated to the shared partition
can utilize the large cache size as well as the high
associativity. The experimental results strongly support the
effectiveness of SCP.

Acknowledgement

This work was supported by the ICT R&D program of
MSIP/IITP, [2016 (R7177-16-0233), Development of
Application Program Optimization Tools for High
Performance Computing Systems]

References

[1] Li Zhao and et al., “CacheScouts: Fine-Grained
Monitoring of Shared Caches in CMP Platforms”, PACT
2007

[2] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and
Efficient Fine-Grain Cache Partitioning”, ISCA 2011

[3] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling
Ways and Associativity”, MICRO 2010

[4] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“CACTI 6.0: A Tool to Model Large Caches”, HP
Laboratories 2009

[5] M. Qureshi and Y. Patt, “Utility-Based Cache Partitioning:
A Low-Overhead, High-Performance, Runtime Mechanism
to Partition Shared Caches”, MICRO 2006

